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(Nu = 1) to convection (Nu > 1) were verified in the present 2. L. J. THOR and J. W. WESTWATBR, Microscopic study 
study for L/D of 05 and 1.0. Transient data obtained during of solid-liquid interfaces during melting and freezing, 

phase change are shown in Fig 3 and these substantiate the Chem. Engng Prog. Symp. Ser. 59, No. 41, 155-164 

effect of L/D in the range of @59-3.0. (1963). 

Experimental interfacial velocities and positions are given 
in Fig. 4. Also shown are predicted results using k,,, as a 
function of L/D in the finitedifference equations. The agree- 
ment is superior to that obtained when the effect of L/D is 
ignored. 

3. D. V. B~GBR and J. W. WESTWATER, Effect of buoyancy 
on the melting and freezing process, J. Heat Transfer 
89,81-89 (1967). 

In summary, the additional uses of the numerical method 
of Murray and Landis now include (1) Cases in which only 
one phase is present initially; (2) Cases with unequal 
densities for the phases; (3) Cases with free convection in 
the liquid ; and (4) Cases .such that the depth-width ratio for 
the liquid affects convection in the liquid. 

4. W. L. HEITZ, Hydrodynamic stability of water and its 
effect on melting and freezing, Ph.D. Thesis, University 
of Illinois, Urbana, Illinois (1970). 

5. E. R. G. ECKERT and R. M. DRAKE, JR., Heat and Mass 
Trunsfer. McGraw-Hill, New York (1959). 

6. P. A. LoNGWELL, Graphical method for solution of 
freezing problems, J. Am. Inst. Chem. Engrs 4, 53-51 
(1958). 

7. L. E. SCRIVEN, On the dynamics of phase growth, Chem. 
Engng Sci. 10, l-13 (1959). 
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NOMENCLATURE 

electric field ; 
constant defined by equation (6); 
defined by equation (18) ; 
defined by equation (19); 
solution of equation (16) ; 
defined by equation (39); 
defined by equation (40) ; 
solution of equation (36) ; 

h, 
J, 
k, 
k 0, 

k, 
r, 

‘c> 
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y/In rlo; 
Joule heating parameter, aoEZrf/koTo ; 
thermal conductivity of conductor at temperature T; 
thermal conductivity of conductor at temperature 
T, ; 
thermal conductivity of insulator ; 
radial coordinate measured from center of con- 
ductor ; 
radius of conductor ; 
radial distance from center of conductor to outside 
surface of insulator; 
temperature ; 
temperature of outside surface of insulator. 
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Greek symbols 

a, product of temperature coefficient of thermal 
conductivity times Ta ; 

8, product of temperature coefficient of electrical. 
conductivity times T, ; 

YY kJk; 

6, J-‘: 

0, (T- T,)/T, for conductor, 0 < n < 1; 
Bi, (T- To)/& for insulator 1 C rp < no ; 
% rlr, ; 
90, r,Jrc ; I 
g, (q - w ; 
b, electrical conductivity of conductor at temperature 

T; 
go, electrical conductivity of conductor at temperature 

T,. 

INTRODUmION 

NONLINBAR effects associated with Joule heating are 
exploited in various analytical detection techniques [l, 2-j. 
Often the electrical conductor is surrounded by a thin layer 
of gas, or an insulator, whose surface is kept at a fixed 
temperature. Furthermore it is desirable to predict the 
temperature profile within an electrical cable and its 
insulator, for systems within which high Joule heating may 
occur. Bird et al. [3] have reported L. F. J. Broer’s analysis 
concerning low Joule heating within an electrical cable 
having variable conductivities, when the surface of the 
conductor is kept at a constant temperature. Therefore, it is 
of interest to extend Broer’s analysis to include an insulator 
and also to treat the case of high Joule heating. 

ANALYSTS 

Consider an insulated d.c. electrical cable with tempera- 
ture dependent electrical and thermal conductivities. The 
insulator has a constant thermal conductivity and has its 
outer surface maintained at a constant temperature, 7,. The 
steady state heat conduction equations for the cable and for 
the insulator are respectively, 

The quantities (1 - a@ and (1 - @) represent the ratio of 
the thermal conductivi~ to that at the reference temperature 
‘& and the ratio of the electrical conductivity to that at the 
temperature T, respectively. For conductors which obey the 
Wiedemann-Franc-Lorentz Law, it is readily shown that 

B- a = 1. The quantity J represents the rate of Joule 
heating per unit volume of conductor divided by the rate of 
heat lost per unit surface area of conductor, 

Both the temperature and the thermal flux are considered 
to be finite and continuous functions of the radial coordinate, 
n. The outside of the insulator is kept at a fixed temperature. 
Thus, the boundary conditions are 

0 = ei at n=l, (3) 

(1 - a@@ = yei at q=l, (4) 

8, = 0 at n = ‘lo. (5) 

Equations (2) and (5) imply that 

@Art) = G In (n!tlab l<rtG%). (6) 

Thus from equations (3) and (4) we have 

e(i) = -co In no, (7) 

[I - ae(l)]eql) = yc,, (8) 

where Co is a constant to be determined from the equations 
governing the temperature 0(q) in the conductor. Conse- 
quently, the problem is to find a continuous function e(q) 
and a constant C, which satisfy equation (1) and the 
conditions (7) and (8), which together imply that 

eyi) = &I 
1+ aC,lnn, 

(9) 

8’(l) 4 M(1) = ae(l)(?(l), 

where h = y/in r/a. 

(10) 

This problem is highly nonlinear and exact analytical 
techniques are not immediately applicable. Therefore asymp- 
totic methods are employed to study two limiting cases: 
(i) low Joule heating where 0 < J B 1, and (ii) high Joule 
heating where J 9 1. In the case of low Joule heating, a 
straight-forward regular perturbation series is sufftcient 
However, the case of high Joule heating leads to a singular 
perturbation problem requiring boundary layer techniques. 

(i) Low Joule heating 
When 0 -=z J 6 1 we assume that 

@ = J.f,(s) + J2fAq) + J3f&d + (III 

Substituting equation (11) into equations (1) and (10) and 
equating like powers of J yields the following set of equations 
for the &i = 1, 2, 3,. .): 

k$ q$$ =@-a)fl +af\‘, ( 1 
f;(l) + hhtl) = af,(l)f;(l) 

ii qg = (fl- a)f2 + 2af;f; + a@ - u)ff ( > f Kflf:. 

(12) 

(13) 

04) 

(15) 

(16) 
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f;(1) + hfs(1) = atX1)f;(1) + f;UMl)l. 

In equations (14) and (16) the right-hand sides have 
simplified by using the equation (12) for fi. 

Continuous solutions of (12), (13) and (16 (15) are given by 

fl=(!q)+!y! 
and 

(18) 

Upon evaluating C, by using equations (7), (ll), (18), (19), 
we find that 

Bi= [$!+J’(&+~)+O(J’)lLn(~/%J, (20) 

and clearly by using equations (18) and (19) in equation (11). 
we have determined e(q) to terms of order O(J”). 

When thick insulators with low thermal conductivities 
surround conductors, the temperature of the conductor 
becomes uniform and approaches the value 

(21) 
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(17) In the usual way we first assume a regular perturbation 
series of the form 

been 
e = e,(q) + c&(q) + c%,(rl) + (25) 

Equation (21) is valid only for small values of J. However, 
when thick insulators with low thermal conductivities 
surround conductors, the temperature in a conductor may 
be assumed uniform throughout for any value of J. Then 
equation (2) is solved subject to the condition given by 
equation (5) together with the condition that 

8’ = -41 - m 
2y(1 - a0) 

at q=l. (22) 

The tinal result for the conductor temperature is, 

e _ 2~ + JB ln v. - WY + JB ln rloJ2 - 8w ln volt 
4ay ln v. 

(23) 

which is valid for all values of J. 

(ii) High Joule heating 
When J % 1, it is convenient to let E = J-l. Thus, we 

now consider the singular perturbation problem of finding 
the asymptotic expansion as E -+ 0 of the continuous 
solution of 

s$[~(1-.6’);]+rl(l-@)=O, O<t~<l, (24) 

Substituting equation (25) into equation (24) and equating 
powers of c, we immediately find that 

e,bd = ii~. (261 

e,(tl) = 0 for nal. (27) 

Therefore, in the region 0 < q < 1 except for a thermal 
boundary layer near q = 1, we find that to all powers of 

a&l)- l/b as E + 0. As we expect from the singular nature 
of the problem, the expansion equation (25) does not satisfy 
the boundary condition equation (9), and thus, we must find 
an expansion which is valid in the boundary layer near 
q = 1 and which matches with equation (26). 

By standard techniques (see [4], for example) we find 
that the thermal boundary layer has a thickness of order 
&. Then, we define a new length ij given by 

and we assume the following expansion to be valid in the 
boundary layer : 

em = gem + d dii) + 47hi) + (29) 

Noting equation (26) and then substituting equation (29) 
into equations (9) and (24) and equating like powers of Q 
we obtain 

_!&wo)~]+(l-BBo)=o, -coGriG09 W) 

sb(O) = 0, 

Bo(fi) + 1/8 as ii-+--co, 

(31) 

(32) 

$ (l-wo)$-a$g, 
[ 1 

-Be2=a(sd+s3 

(36) 

g;(O) = 0, (37) 

gz(ii) + 0 as q+-co. (38) 

The boundary conditions equations (32), (35) and (38) 
express the proper matching conditi9n.q so that the boundary 
layer expansion matches with l/b as e approaches zero. which satisfies equation (9). 
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Clearly, a solution of equations (30)-(32) is given by 

e&ii) = l/B. (39) 

By rigorous, but rather involved, phase-plane arguments it 
is possible to show [S] that there does exist another solution 
of equations (30)(32). However, this other solution would 
imply a temperature at r) = 1 which is greater than l//l; 
therefore this solution is rejected upon the grounds that such 
a temperature profile is impossible for the solution of the 
steady state conduction equations, (l)-(5). 

Now we shall find gr(rj). Substituting equation (39) into 
equations (33) and (34) and solving for g,(g) yields 

Therefore, in the boundary layer starting at n = 1 and 
penetrating to a distance of order tt the asymptotic expan- 
sion of the solution as L + 0 is given by 

@($ = $ _ Et yCo@ - aJ4 
80 + aC, Inno) 

exp CB(rl - MB - a)*cf + WI (41) 

Upon comparing equation (41) with equation (39) it can be 
seen that equation (41) is uniformly valid on the whole 
interval 0 C r~ < 1. 

It is now possible to determine the value of Co from 
equations (7) and (41); the result is 4. J. D. COLE, PerMation Metho& in Applied Mathema- 

tics. Blaisdell. Massachusetts (1968). 
-1 

Co = G L 1 + L*@ _’ a)* + O(c) 1 (42) 
5. D. S. COHEN, Multiplicity of sohttions of nonlinear . boundary value problems. To be published. 

Thus, the asymptotic expressions of the temperature 
profiles for the conductor and for the insulator are 
respectively 

and 
-1 

-+O(i)]ln(;), IbrlCttw (44) 

As expected equations (23) and (43) both yield &r) = l//J 
when J is large and y is small. 
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NOMENCLATURE 

area ; 
drag coefficient ; 
specific heat: 
diffusivity ; 
heat-transfer coefficient ; 
thermal conductivity ; 
mass-transfer coefficient ; 
mass of droplet; 

l Assistant Professor of Mechanical Engineering. 

NW 
p, 
Pr, 
p.7 

ii:: 
Q sb, 

QA, 
Q 
R,D’ 

Nusselt number; 
pressure ; 
Prandtl number; 
duct-static pressure ; 
total heat transfer to vapor film; 
heat transfer to liquid droplet; 
heat carried with diffusing vapor in form of super- 
heat ; 
heat to vaporize diffusing vapor; 

equals Q, + Q,; 
gas constant ; 


